Rees calls the AI developers “philosophical laboratories” because “they disrupt the old concepts/ontologies we live by.” That characterization is somewhat misleading. Those disruptive engineers do not constitute a philosophical school in a traditional sense, since they aren’t advancing a positive philosophical program (such as explicit new theories of language or consciousness). And by their own admission, they lack important answers about how and why LLMs work. Yet unquestionably, the technology is blazing some kind of trail—whither, no one knows for sure—leaving us to philosophize in its wake, just as Manning, Agüera y Arcas, and Rees have done.
In this respect, current debates about writing machines are not as fresh as they seem. As is quietly acknowledged in the footnotes of scientific papers, much of the intellectual infrastructure of today’s advances was laid decades ago. In the 1940s, the mathematician Claude Shannon demonstrated that language use could be both described by statistics and imitated with statistics, whether those statistics were in human heads or a machine’s memory. Shannon, in other words, was the first statistical language modeler, which makes ChatGPT and its ilk his distant brainchildren. Shannon never tried to build such a machine, but some astute early readers of his work recognized that computers were primed to translate his paper-and-ink experiments into a powerful new medium. In writings now discussed largely in niche scholarly and computing circles, these readers imagined—and even made preliminary sketches of—machines that would translate Shannon’s proposals into reality. These readers likewise raised questions about the meaning of such machines’ outputs and wondered what the machines revealed about our capacity to write.
The current barrage of commentary has largely neglected this backstory, and our discussions suffer for forgetting that issues that appear novel to us belong to the mid-twentieth century. Shannon and his first readers were the original residents of the headspace in which so many of us now find ourselves. Their ambitions and insights have left traces on our discourse, just as their silences and uncertainties haunt our exchanges. If writing machines constitute a “philosophical event” or a “prompt for philosophizing,” then I submit that we are already living in the event’s aftermath, which is to say, in Shannon’s aftermath. Amid the rampant speculation about a future dominated by writing machines, I propose that we turn in the other direction to listen to field reports from some of the first people to consider what it meant to read and write in Shannon’s world.